« Sex Bomb! | メイン | 年忘れ »

コメント

catbird

3次元閉多様体(3次元ユークリッド空間)の中にある全ての「ループ=輪ゴム」を一点に収縮出来た時(=「パイワンが消えた時」)、球体と同相と言えるかと、ポアンカレは問題を提起している。例えば、ドーナツ形では、輪ゴムはドーナツの穴に引っ掛り、一点に縮むことは出来ない。3次元多様体の分類をいきなり考えるのは難しい。そこで2次元多様体(端の無い一枚の面)の分類について考えてみる。以前私が示した様に、2次元閉多様体は、Ⅰ~Ⅷまでの8つの形に分類出来る。そして、その一枚の面の内面上にある「輪ゴム」をその面上で伸縮・交差・すり抜けさせ加工して、面に引っ掛からず一点に縮むのは、球面のみであることが分かった。この事実を、3次元閉多様体に応用してみよう。2次元閉多様体では「輪ゴム」は、内側の面上のみ移動出来る。3次元閉多様体では「輪ゴム」は、その表面を離れ空間の内側を自由に移動できる。その点が異なるのみである。表面の内面上にある「輪ゴム」の内、一つでも面に引っ掛り、一点に縮むことが出来ない時は、その3次元閉多様体を除外して良い。2次元閉多様体の内、以前私が示したⅡ・Ⅴ・Ⅵの形では、輪ゴムを面から離し内部の空間内を移動・伸縮・すり抜けさせて加工しても、輪ゴムの輪の中にドーナツの穴が存在する為、一点に収縮させることは出来ない。また、Ⅲ・Ⅳ・Ⅶ・Ⅷの形では、同様に空間内で加工しても、輪ゴムの輪の中に端の無い一枚の面が存在する(端が無いので輪から外すことが出来ない)為、一点に収縮させることは出来ない。即ち、Ⅰの「球」以外では、面上で移動しようと、面を離れて内側の空間内を移動しようと、決して一点に収縮しない「輪ゴム」が存在することが分かる。3次元閉多様体の表面の形状が問題なのであり、内部の空間の構造には影響されない。3次元閉多様体の表面は、2次元閉多様体に完全に含まれる。従って輪ゴムが一点に収縮する3次元閉多様体は、球体のみであることが、証明出来る。

catbird

ポアンカレ予想とは『地球からロープを付けロケットに乗り、宇宙を旅行する。そして、地球に帰った時、ロープの両端がある。そのロープの両端を離さないで、ロープ全体を引き寄せられた時、この宇宙はおおむね丸いと言えるか。』という問題です。これは3次元閉多様体(3次元の縁の無い繋がった一枚の面)の中で、球体(3次元球面)以外にロープの引っ掛らない(単連結)の形があるかと言うことです。3次元閉多様体の作り方が有限ならば3次元閉多様体の数も有限であり、1つ1つ検証すれば、回答が出ます。ヒントは、3次元閉多様体を平面で輪切りにした時、必ず一本の輪になっており、その平面を幾ら動かしてもその輪は連続しており、必ず元の輪の位置に戻ると言う事です(ドーナツ形を考えて下さい)。輪の途中が切れていたり、元の位置の輪に戻らず途中で消えていたら、穴が開いている(=端がある)ことになります。小さくなり点になって消えること(鉛筆のキャップの形)はありますが、トポロジーではその部分は、縮めて無くすることが出来る為、その場合は無視して良いのです。二つの輪に枝分かれすることはあります。しかし、その輪は枝分かれした元の位置に必ず戻ります。(2つ穴のあるドーナツ形を考えてください)従って、枝分かれした場合、2つの基本的な形の組合せで出来ていると考えます。従って、3次元閉多面体の基本形は、一つの輪を移動させ始めの位置に戻すことで作れます。輪の形と動かし方の違いで、異なる形が出来ます。輪には3つの形があります。○(丸形)・∞(無限大形)・◎(一筆書二重丸・文字が無い為便宜上◎を使用する=一筆書きで二重丸を書いた形)です。この3種の輪は平面上で幾ら動かしても、他の輪にはなりません。∞は○にしようとしても、折り返せない点が外側に残ります。◎を○にしようとしても、折り返せない点が内側に残ります。従って、輪を移動させる途中で他の輪になることはありません。では∞にもう一捻りを加え三つの丸い部分のある形はどうでしょうか。これは、平面上で○になります。丸い部分が偶数なら∞になり、奇数なら○になります。一筆書き三重丸は平面上で○になります。この場合、丸が偶数なら◎に、奇数なら○になります。従って、輪の種類は3種類しかありません。基本的な動かし方は4種類あります。①輪が左右対称になる様な軸を取り、その軸を中心に回転させ元の輪の位置に戻す方法、(○の場合球体になります。∞の場合回転軸は2本取れますが、いずれも一点に於いて面が交わる為、存在しません。◎の場合回転軸は一本取れますが、これも面が一点に於いて交わる為存在しません。)②輪を外の点を中心として、一回転させ元の位置に戻す方法、(○の場合、ホースの口と口を向かい合わせに繋いだドーナツ形になります。◎の場合は、縦切り口が◎のドーナツ形[=幾ら伸縮し面と面をすり抜けさせて変形しても、ドーナツの内側に折り返せない輪がドーナツの穴を取り囲むように横{ドーナツを横たえた場合}に残ります])∞の場合は、縦切り口が∞のドーナツ型[=変形しても、ドーナツの外側に折り返せない輪が横に残ります])③輪を輪の外の点を中心として、半回転させ、途中で引き返し、来た軌道とは異なる軌道を通って元の輪の位置に戻る方法、(○の場合、ホースの口と口を同じ方向に向けて合わせた形=クラインの壷になります)④輪を上下方向に移動させつつ元の輪を取り囲むように大きくした上で元の位置に戻す方法、(○の場合ドーナツ形で②の方法と同じ形になります。)
トポロジーでは、面は幽霊の様にお互いにすり抜ける為、途中複雑に結び目が出来る様に動かしても、すり抜けて結び目は出来ず、この4種類の方法で作った形に還元されます。②で2回転させて元の位置に戻しても、面と面がすり抜ける為、ドーナツ形になります。③の途中で引き返すことを2度行った場合は、変形すると単なるドーナッツ形になります。輪が元の位置に戻る動かし方は、この基本的にはこの4種類のみです。ただし、途中の動かし方の変化が②③④には3種類あります。②について言えば、前記方法と、回転の途中で引き返し、来た輪を取り巻く様に大きくし、また元の進行方向に引き返しながら輪を小さくして元の位置に戻す方法(ホースを内側が外側になる様に外側にひっくり返えして剥き、また外側が内側になる様に内側にひっくり返した上で切り口をつなげた形=変形させても、ドーナツの外側に縦方向[ドーナツを横たえた時]に折り返せない輪が残ります)、逆に途中で引き返しながら輪を来た輪の内側に入り込む様に小さくし、また元の進行方向に引き返しながら輪を大きくして元の位置に戻す方法(ホースを外面が内側になる様に内側にひっくり返した上で、今度は内面が外側になる様に外側にひっくり返し切り口をつなげた形=幾ら変形してもドーナツの内側に縦方向の折り返せない輪が残ります)の3種類です。2回この操作を行うと変形すると唯のドーナツに戻ります。③について言えば、移動の途中に②の場合と同じ動きを入れる方法です。変形しても折り返せない縦の輪(ホースの切り口と同じ形の輪)がクラインの壷に残ります。この場合、内面と外面が繋がっている為、外側の輪を移動させれば内側の輪となる為同じ形と言えます④について言えば、単純にぐるりと一回動かす方法(○②と同じ形)と、輪を2回転させて元の位置に戻す方法(ドーナツの縦断面は一筆書二重丸=◎②と同じ形)と輪を∞の様に動かす方法(ドーナツの縦断面は∞=∞②と同じ形)の3通りありますが②と同じ形になります。3回転させた場合、変形すると唯のドーナツになります。∞の○が3つになる様に動かしても、変形すると唯のドーナツ形になります。以上述べた、Ⅰ球体・Ⅱドーナツ形・Ⅲ内側に折り返せない横の輪のあるドーナツ形・Ⅳ外側に折り返せない横の輪のあるドーナツ形・Ⅴ内側に折り返せない縦の輪のあるドーナツ形・Ⅵ外側に折り返せない縦の輪のあるドーナツ形・Ⅶクラインの壷・Ⅷ折り返せない縦の輪のあるクラインの壷の8種類の基本形が存在します。この8種類の形は幾ら伸縮し、面と面をすり抜けさせても他の形にはなりません。上記以外の輪と動かし方の組合せでは、3次元閉多様体にならないことが分かります。つまり、物の形はこの8種類の組合せで作られていることが分かりました。Ⅱ.Ⅴ.Ⅵではドーナツの穴が引っ掛りロープは回収出来ません。Ⅲ.Ⅳ.Ⅶ.Ⅷでは面の内側と外側が繋がっており、ロープの輪の中に縁の無い面(どこまでも続く面)が存在する為、ロープは回収出来ません。ロープを回収できる形はⅠの球体のみです。従って、宇宙を構成している部分に、球体以外の形が一つでも含まれている場合はロープを回収することは出来ません。従ってロープが回収出来た時この宇宙は『おおむね丸い』と言えます。

Master

>しゃろく
わかんなくても 日常生活にはまるで全く支障はないかと。ご安心アレ。

>もりお
テレビの特番って、フィギュアスケートの安藤の特集ですかな。これまた知らなくても日常生活にはなんら支障ないかと。

DENのQB、今度チェックしてみます。
カトラーとかいう奴ですかな?9勝したのにワイルドカード出れないとは気の毒な。。こっちはビル・カウワー辞任ってのがショックです。

しゃろく

わからんかったです……(爆)

もりお

ふーん。

たしかに年末は色々と勉強になることが多い。
”絢香”って歌手の名前、この前はじめて
テレビの特番でその読み方を知った。

それはそうと、DenのRookieQBはええぞ。
ものごっつい強肩でElwayを思い出させる。
#6ってのがいまいちやけど、是非一度見てみぃ。

この記事へのコメントは終了しました。